Z 2 – Systolic - Freedom

نویسنده

  • Michael H Freedman
چکیده

We give the first example of systolic freedom over torsion coefficients. The phenomenon is a bit unexpected (contrary to a conjecture of Gromov’s) and more delicate than systolic freedom over the integers. Dedicated to Rob Kirby, a lover of Mathematics and other wild places. Thank you for your inspiration. AMS Classification 53C22

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry & Topology Monographs Z 2 {systolic-freedom

We give the rst example of systolic freedom over torsion coefcients. The phenomenon is a bit unexpected (contrary to a conjecture of Gromov’s) and more delicate than systolic freedom over the integers. Dedicated to Rob Kirby, a lover of Mathematics and other wild places. Thank you for your inspiration. AMS Classi cation 53C22

متن کامل

Laminations as systolic phase transition

We study a phase transition associated with the property of systolic freedom for families of metrics on 3-manifolds. Given a sequence of minimizing nonseparating surfaces in a systolically free sequence of metrics, we describe a certain accumulation phenomenon. The latter can be captured in the limit by a dichotomy property for the limiting minimal lamination. Such a dichotomy can thus be seen ...

متن کامل

ar X iv : m at h / 98 10 17 2 v 1 [ m at h . D G ] 2 9 O ct 1 99 8 VOLUME OF RIEMANNIAN MANIFOLDS , GEOMETRIC INEQUALITIES , AND HOMOTOPY THEORY

We outline the current state of knowledge regarding geometric inequalities of systolic type, and prove new results, including systolic freedom in dimension 4.

متن کامل

Volume of Riemannian manifolds , geometric inequalities , and homotopy theory

We outline the current state of knowledge regarding geometric inequalities of systolic type, and prove new results, including systolic freedom in dimension 4. Namely, every compact, orientable, smooth 4-manifold X admits metrics of arbitrarily small volume such that every orientable, immersed surface of smaller than unit area is necessarily null-homologous in X. In other words, orientable 4-man...

متن کامل

m at h . D G / 9 81 01 72 v 2 1 9 N ov 1 99 8 VOLUME OF RIEMANNIAN MANIFOLDS , GEOMETRIC INEQUALITIES , AND HOMOTOPY THEORY

We outline the current state of knowledge regarding geometric inequalities of systolic type, and prove new results, including systolic freedom in dimension 4. Namely, every compact, orientable, smooth 4-manifold X admits metrics of arbitrarily small volume such that every orientable, immersed surface of smaller than unit area is necessarily null-homologous in X. In other words, orientable 4-man...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999